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Abstract

We show how to provide a semantics for the identity type of intensional
Martin-Löf type theory using the machinery of abstract homotopy theory.
One specific consequence is that the identity type is soundly modelled in
any Quillen model category. We then turn to the study of cocategory and
(strict) interval objects and isolate two conditions under which an interval
will model intensional identity types.
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Introduction

The intensional form of Martin-Löf’s type theory [14] was originally intended
to provide a (logical) foundation for the development of Bishop-style con-
structive mathematics. There are two features of this type theory which are
of particular interest. Namely, the presence of universes and the treatment
of identity types. It is this latter feature with which we will be presently
concerned.

Recall that one of the requirements laid down by Bishop [2] for the
construction of a set A is that it must come equipped with an equivalence
relation =A, the rôle of which is to indicate what it means for elements of
A to be equal. This is implemented in type theory by stipulating that each
type A comes equipped with a notion of definitional equality on A denoted
by =A and by admitting judgements of the form:

(a =A b) : A,

where a, b : A, and similarly for types in context. Moreover, for each type
A and terms a, b : A there is a propositional identity type:

IdA(a, b) : type,

which, in terms of the familiar Curry-Howard correspondence, is to be
thought of as the proposition which states that a and b denote identical
entities. Thus identity of terms is captured both via the form of judgement
given by =A and via the type IdA(a, b). The peculiar feature of intensional
type theory (ITT) is that these two types of identity are not formally con-
flated by the rules of the theory. In particular, the type IdA(a, b) may be
inhabited without the judgement a =A b : A being derivable.

In order to see why it might be perspicuous to avoid conflating these two
forms of identity consider a situation in which two functions f and g (or,
if you prefer, two programs) are defined in radically different manners; but
where, it so happens, they are extensionally identical. For instance:

λx : N.1
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and,

λx : N. 1 × 1 × · · ·× 1︸ ︷︷ ︸
x-times

.

Qua ordinary set-theoretic functions these two lambda terms are identical;
but qua algorithms they are distinct since, e.g., the former has constant
time complexity whereas the latter has at least linear time complexity (and
could be more complex depending on how the multiplication algorithm itself
is specified).

Then, usually for pragmatic reasons, it may be convenient to formally
retain their different specifications while also being able to express that they
behave identically (with respect to their action on any given input). In ITT
this distinction would be captured by observing that Id(f, g) is inhabited,
but that (f = g) is not a derivable judgement (or, at least, need not be
derivable). Of course such situations do arise, especially in computer science,
where it is convenient to retain the information about how f and g are
defined (e.g., consider the case where f and g are extensionally identical but
of different complexity).

This (apparent) distinction between definitional and propositional equal-
ity leads directly to interesting meta-mathematical questions. One promi-
nent question (the question of “uniqueness of identity proofs” or UIP) is
whether it is possible to show that all terms of an identity type are identi-
cal. I.e., whether given terms a, a′ : A and p, q : IdA(a, a′) one can in turn
show that the type IdIdA(a,a′)(p, q) is inhabited. Such questions were taken
up from both a syntactic and semantic perspective in Streicher’s Habilita-
tionsschrift [20] although the independence of UIP was not solved. Finally,
Hofmann and Streicher [6] exhibited a counter-example to UIP using a model
in the category of groupoids. One important observation leading to this re-
sult was that identity types themselves satisfy (an appropriate type theoretic
form of) the axioms for groupoids. Above we considered an example (exten-
sionally identical functions of different complexity classes) where identity
types have a useful and natural interpretation. However, the observation
that identity types behave like “internal groupoids” in the type theory sug-
gests another situation in which the distinction between propositional and
definitional equality is useful.

In category theory it is often convenient to conflate objects, functors
and other structure which are isomorphic. Similarly, in algebraic topology
there are situations where one regards two continuous maps as identical
when in fact they are only homotopic to one another. These examples
and those like them show how it is fruitful for two terms (maps) to be
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propositionally identical (i.e., naturally isomorphic or homotopic) despite
the fact that they are definitionally distinct (i.e., they really are distinct
maps). Identity types in intensional type theory may be regarded therefore
as proving a mathematical tool for reasoning about such phenomena (cf. [6]).

Since situations where it is beneficial to systematically “ignore” certain
differences between data are ubiquitous in mathematics it should come as no
surprise to learn that powerful tools have been developed for investigating
such matters. In particular, the concept of a model category was intro-
duced by Quillen [17] to provide an axiomatic framework allowing for the
development of abstract “homotopy theory” in a variety of diverse mathe-
matical settings. As he points out, such a framework permits discussion of
homotopies of simplicial sets, suspensions and loops in the setting of chain-
complexes and so forth.

It is the primary goal of this thesis prospectus to show that the notion of
Quillen model category provides an appropriate category theoretic setting
for the semantics of intensional type theory. This is demonstrated by proving
that a certain fragment of ITT can be modelled in any model category. We
now turn to an overview of the prospectus and then to a discussion of the
potential ramifications and applications of this research should it be carried
out in full.

0.1 Overview of the prospectus

In Chapter 1 we begin by discussing the formal rules governing the behavior
of identity types in intensional type theory. We then prove that these rules
have no non-extensional models in the internal language of a locally carte-
sian closed category. This fact motivates an alternative approach to the
semantics of such theories. In particular, where in a locally cartesian closed
category dependent types are interpreted using slice categories we instead
restrict their interpretation to those objects of the slice categories which are
fibrations. Of course, before this semantic innovation can be made we must
first introduce the appropriate mathematical background. Thus in Section
1.3 we introduce Quillen homotopy structures. This material is put to use in
Section 1.4 where we prove the soundness of a restricted form of intensional
type theory. Specifically, we treat in this prospectus only those aspects of
intensional type theory related to the “structural” aspects of the theory and
the identity types (i.e., we do not consider type formers such as dependent
sums and products). As far as we are aware, the main result (Proposition
1.4.1) of Section 1.4 is entirely novel.

In Chapter 2 we turn to the question of which categories possess suit-
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able structure to soundly interpret the restricted form of dependent type
theory considered above. This material also promises to play a part in fu-
ture research along these lines (particularly in proving the completeness of
the theory with respect to the semantics). Specifically, in Sections 2.1 we
introduce the notion of a cocategory object in a category. As a special case
we then obtain a notion of interval object which permits the definition of
such important notions as homotopy and fibration. These considerations are
discussed in Section 2.2. One important fact about interval objects of the
kind defined in this prospectus is that they endow the underlying category
with the structure of a (strict) 2-category (and, indeed, an ω-category). We
prove this fact in Section 2.3. Using an interval object I in a cartesian closed
category with finite colimits it is possible to define the identity type for an
object A to be just the map AI !!A×A induced by the “endpoints” 1 !!

!!I.
However, in order for this to fit with the general framework it is required
that this map be a fibration. In section 2.4 we provide several equivalent
characterizations of what it means for this map to be a fibration. We then
turn to the question of cofibrations in Section A.2. The definition of cocate-
gory object is entirely standard and connections between homotopy theory
and cocategory objects of various forms are well known. For example, a
Hopf algebra is a form of comonoid (cf. [1]). As such it is entirely possible
that the results of Chapter 2 may be already known to specialists, although
we are unaware of their presence anywhere in the literature.

0.2 Future work and applications

Research relating ITT and homotopy theory or, more broadly, ITT, ho-
motopy theory and higher dimensional category theory should ideally have
applications to all three areas. We consider each of these possibilities in
turn.

Possible applications to homotopy theory: One of the difficulties
of homotopy theory is that it is usually a non-trivial matter to verify that
a category C really does possess a Quillen homotopy structure. In some
cases, such as for simplicial sets, it is quite involved (e.g., [7]). Moreover,
aside from “brute force” the only general tool which exists for verifying
that a category possess a homotopy structure is the so-called “small-object
argument” (cf. [7]). It is a possibility therefore that the connection with
intensional type theory may lead to new techniques for checking homotopy
structure. In particular, the results of Chapter 2 suggest that there should be
a general theorem about when categories with interval objects (such as the
categories of (small) groupoids or simplicial sets) possess a related homotopy
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structure.
Possible applications to higher dimensional category theory:

There is much current interest in various forms of weak higher dimensional
categories (cf. [12]) and there should be some concrete connection with
ITT. In particular, in ITT the usual conditions such as η type rules and the
reflection rule for identity types are relaxed so that, where one demanded
a canonical representative in the extensional case, one now only demands
that some representative exist. This is similar to the process of relaxing
identity which occurs in higher dimensional category theory. So instead of
demanding, e.g., that f ◦ (g ◦ h) = (f ◦ g) ◦ h one may simply stipulate that
there exists a higher dimensional “cell” f ◦(g◦h) ""(f ◦g)◦h. In particular,
there appear to be many similarities between intensional type theory and
Joyal’s theory of quasi-categories [9]; but this has not yet been investigated.

Possible applications to ITT: The most obvious way in which the
tools of homotopy theory may impact ITT is by providing it with a sound
and complete semantics. Such a semantics would make it possible to more
easily solve meta-theoretic questions about the theory in the way that gen-
eral category theoretic models of other theories do. On a more “conceptual”
level, the existence of such homotopy theoretic models should provide a
greater insight into some of the type forming operations such as iterated
identity types IdIdId...

(a, b).
More generally, it is thought that ITT should provide an “internal lan-

guage” for model categories and higher dimensional categories much like λ-
calculus does for cartesian closed categories. This could be an aid in proofs
and calculations for homotopy and higher category theory. For instance,
the fact that type checking is decidable in ITT and the close relation with
a number of proof assistants suggests numerous practical applications to
homotopy theory and higher dimensional category theory. Since higher di-
mensional category theory often involves rather complicated combinatorics
it would be of great use to be able to automatically verify coherence dia-
grams and the like. For a nice account of the potential applications of proof
assistants in mathematics see [19].

We now turn to a quick enumeration of three specific topics which should
be addressed forthwith:

1. Investigate in the term model of the type theory in detail and study its
connection to homotopy theory. In particular, this should permit an
extension of the present semantics to the full theory with dependent
products and sums.

2. One feature of ITT is that, if we wish for type checking to remain
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decidable, certain η-rules must be avoided. Figuring out how to deal
with this issue in the homotopy semantics is a natural next step for
the project. There should also exist a connection with the notion of
“weak local cartesian closure” as studied by Palmgren [16].

3. The “identity types” in several of the models arise naturally by ex-
ponentiating by an interval object I. I.e., IdA = AI !! A × A. It is
therefore natural to consider a form of intensional type theory satisfy-
ing this condition (that the identity types arise from some single type
I).

0.3 Notation and terminology

Throughout we strive to maintain conventional notation sometimes relaxing
the syntactic rigor of the type theory. It should be mentioned that we refer to
a category as cartesian if it possesses all finite limits and as cocartesian if it
possesses all finite colimits. We employ ·|· for the “judgement stroke” of type
theory instead of · # ·. Our treatment of the type theory is very brief and
it is assumed that the reader is familiar with some form of dependent type
theory and their category theoretic models. In particular, we recommend
[15], [20] and [5].
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Chapter 1

Identity Types

It is the aim of this chapter to introduce a simple form of intensional type
theory and to prove that it is sound with respect to the homotopy models
introduced below. We begin by indicating the motivation for considering
such models; viz. that there are no non-extensional models of the theory
in the usual semantics of the internal language of a locally cartesian closed
category. We begin by reviewing the interpretation of dependent type theory
in a locally cartesian closed category. Since this material is standard (and is
a prerequisite to understanding this prospectus) we provide only a “warm-
up” discussion of judgements and refer the reader to the literature for a
more detailed treatment.

1.1 The identity type in a locally cartesian closed category

As Seely [18] first observed, the internal language of a locally cartesian closed
category C is a form of dependent type theory. In this interpretation the
objects A,B, . . . of C determine judgements in the empty context:

· | A : type, · | B : type, et cetera.

Objects of slice categories are then types in context in the sense that an
arrow f : B !! A is a judgement:

A | B : type,

which we will sometimes write as either A |f B : type or A | f : type to
emphasize the rôle of the map f . Using the fact that (C/A)/f ∼= C/dom(f)
whenever A is an object of C and f is an object of C/A we are able to
interpret more complicated contexts. For example, the judgement:

x0 : A0, . . . , xn : An | g : type
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asserts that there exists a “chain” of arrows:

dom(g)
g !! An

fn !! . . .
f1 !! A0

in C. Where Γ is the context (x0 : A0, . . . , xn : An) as above we write
Γ : An

!!A0 for the composite f1 ◦ . . . ◦ fn. As such, the claim Γ |g B : type

means that there exists an object g of C/dom(Γ) with dom(g) = B.
A judgement · | a : A may be regarded as stating that there exists a

global section a : 1 !! A of A in C. A judgement in context Γ | b : g or
Γ |g b : B indicates the existence a global section of the object g in the slice
category C/dom(Γ). That is, b is a map dom(Γ) !! dom(f) in C such that
the following triangle:

A

A
1A ##!

!!
!!

!A Bb !! B

A
g$$""

""
""

commutes, where B = dom(g) and A = dom(Γ).
We can now investigate the (propositional) identity types Id in a locally

cartesian closed category C. First, the formation rule for Id is as follows:

Γ | A : type
Id-Form

Γ, x : A, y : A | IdA(x, y) : type.

In order to simplify notation let us work in the empty context Γ = (·).
Suppose A is an object of C. Then the Id-Form rule indicates that IdA

should be an object of C/(A × A) since we have applied the weakening rule
once in order to form the context (Γ, x : A, y : A). I.e., our candidate for
IdA should be of the form:

IdA
i !! A × A.

Next, the introduction rule provides another clue about how IdA should
behave. Informally, the introduction rule states that for any a : A there is
always a “witness” for the proposition that a is identical to itself:

Γ | A : type
Id-Intro

Γ, x : A | rA(x) : IdA(x, x).

The term rA(x) is referred to as the reflexivity term. Working again in the
empty context, this rule asserts the existence of a global section of IdA(x, x)
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in C/A, where IdA(x, x) is the result of pulling i back along the diagonal
∆ : A !! A × A. Equivalently, there exists a section rA : A !! IdA as
indicated in the following diagram:

A

A × A.
∆ ##!

!!
!!

!!
!A IdA

rA !! IdA

A × A.
i$$""

""
""

"

(1.1)

Finally, the elimination rule can be stated as follows:

Γ, x : A, y : A, z : IdA(x, y) | B[x, y, z] : type

Γ, u : A | b(u) : B[u, u, rA(u)]
Id-Elim

Γ, x : A, y : A, z : IdA(x, y) | JA,B(b, x, y, z) : B[x, y, z].

(1.2)

Informally, this rather complicated looking rule states that if B is a type
which varies over IdA and there is a “generic proof” b that B holds for all
(identical terms and their) reflexivity terms, then, whenever there exists a
proof z that two terms x and y of type A are propositionally identical, there
is also a proof J that B is true of x, y and z. Briefly, if B holds for (x, x)
and r(x), then it also holds for (x, y) and z, if z witnesses the propositional
identity of x and y — and this inference is itself witnessed.

In terms of the categorical semantics this rule means that, given g :
B !! IdA, any section:

A

IdA,

rA ##!
!

!
!

!
!

!A Bb !! B

IdA,

g
$$""

"
"
"
"
"

extends to a global section J : IdA
!! B:

IdA

IdA.
1IdA ##!

!!
!!

!!
IdA BJ !! B

IdA.

g
$$""

"
"
"
"
"

Finally, the conversion rule for the J term is as follows:

Id-Conv
Γ | JA,B(b, a, a, rA(a)) = b(a) : B(a, a, rA(a)). (1.3)
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The elimination and conversion rule then fit together nicely as stating that
for any g and b as above there exists a map J : IdA

!! B making the
following pyramid commute:

A IdA,!!

IdA

B

%%

g
A

B

b

&&
##########

A

IdA

rA ''$
$$

$$
$$

$ IdA,

IdA

1IdA
((%%

%%
%%

%
IdA,

B

J

))

(1.4)

where the arrow A !! IdA along the back face is rA.

1.2 Locally cartesian closed categories are extensional

As indicated in the introduction, the distinctive feature of ITT is that the
notion of propositional equality codified by the rules governing the identity
types Id is now allowed to be distinct from the notion of definitional (judge-
mental) equality given by judgements of the form Γ|a = b : A. In particular,
the distinction between intensional and extensional identity is captured by
the fact that the following identity reflection rule is not in general valid in
ITT:

Γ | p : IdA(a0, a1)
Id-Reflection

Γ | a0 = a1 : A.

Note that the converse holds as a consequence of the introduction rule for
IdA. By saying that a model (or semantics) for ITT is extensional we mean
that it validates Id-Reflection.

The following result seems to be part of the “folk-lore” of the subject
(although we know of no mention of it in the literature). We learned of it
from Steve Awodey, to whom the following proof is due.

Proposition 1.2.1 (All LCC “models” are extensional) Under the stan-
dard interpretation given above, every locally cartesian closed category C is
extensional.

Proof We prove that any candidate identity type IdA which satisfies the
introduction and elimination rules for propositional identity is isomorphic
to the diagonal ∆ : A !! A×A. It suffices to verify this for the case where
A is a type in the empty context.
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By assumption we have i : IdA
!!A×A and a map rA : A !! IdA such

that (1.1) commutes. Moreover, rA may itself then be regarded as a type
over IdA:

x : A, y : A, z : IdA(x, y) | rA : type.

I.e., we may apply the elimination rule to rA. Therefore there exists a map
J : IdA

!! A such that the following diagram commutes:

IdA

IdA.
1IdA

##!
!

!
!

!
IdA AJ !! A

IdA.
rA$$""

""
""

Therefore IdA
∼= A. !

Our leading idea for developing a category theoretic semantics for ITT in
which there exist non-extensional models is to place additional constraints
on which objects and arrows are allowed to play the rôle of (dependent)
types. In particular, the types should be restricted in such a way as to
exclude (in general) the map rA : A !! IA. Before we can introduce this
new interpretation it is first necessary to take a detour through Quillen’s
abstract homotopy theory.

1.3 Quillen homotopy structures

We recall the definition of Quillen homotopy structures (synonymously, Quillen
model categories). References include [17], [4], [7] and the forthcoming [10].
Our presentation follows that of the latter most closely.

Definition 1.3.1 A Quillen homotopy structure on a cartesian and cocarte-
sian category C consists of three classes of maps (F,C,W) referred to as
fibrations, cofibrations and weak equivalences, respectively, which satisfy the
following axioms.

(Q0) Both F, C and W are stable under composition and contain all identity
maps.

(Q1) Given maps f and g in C such that the composite g ◦ f is defined, if
any two of f , g or g ◦ f is in W, then so is the third. This axiom is
called the saturation or three-for-two axiom.
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(Q2) Given a commutative diagram:

Y Y ′
u

!!

X

Y

f

%%

X X ′i !! X ′

Y ′

f ′

%%
Y ′ Y,v

!!

X ′

Y ′
%%

X ′ X
j !! X

Y,

f

%%

such that j ◦ i = 1X and v ◦ u = 1Y , then if f ′ is in F, C or W, then
so is f . This is called the retracts axiom.

(Q3) Let a commutative square be given as follows:

C D!!

A

C

i
%%

A B!! B

D

p

%%

with p a fibration and i a cofibration. Then if either p or i is also a
weak-equivalence, there exists a diagonal filler h : B !! C:

C D!!

A

C

i
%%

A B!! B

D

p

%%
C

B
h

**

making both triangles commute. This is called the lifting axiom.

(Q4) Any map f : A !! B in C has two factorizations of the form:

A

B
f ##!

!!
!!

!A Ei !! E

B
p$$""

""
""

such that in both factorizations p is a fibration and i is a cofibration
and in one factorization p is a weak-equivalence and in the other i is
a weak equivalence. This is called the factorization axiom.

We say that a map which is in (F ∩ W) is an acyclic fibration and a map
which is in (C ∩ W) is an acyclic cofibration. The reader should be aware
however that the terms “trivial fibration” and “trivial cofibration” are used
frequently in the literature.

Example 1.3.2 The following are examples of model categories:
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1. Given any cartesian and cocartesian category C let one of F,C,W be
all isomorphisms of C and the other two be all maps.

2. The category Gpds of small groupoids and functors between them
has a homotopy structure where the fibrations are the Grothendieck
fibrations (cf. Definition 2.5.5), cofibrations are functors which are in-
jective on objects, and weak equivalences are categorical equivalences.
This is one of the motivating examples and will be considered in detail
below in Chapter 2.

3. The category Topc of compactly generated spaces is a model category
where the fibrations are Serre fibrations, the weak equivalences are the
topological weak equivalences, and the cofibrations are those maps
which have the left-lifting property (see below) with respect to the
maps in F ∩ W.

4. An alternative homotopy structure on Topc is given by the Hurewicz
fibrations, Hurewicz cofibrations and homotopy equivalences.

5. The category S of simplicial sets is a model category where the fibra-
tions are Kan fibrations, the cofibrations are monomorphisms, and the
weak equivalences are geometric homotopy equivalences.

One of the tricky points about Quillen’s homotopy theory is that proving a
category has a homotopy structure is often highly non-trival. As checking
these examples would take us too far afield we instead refer the reader to
the literature: [7], [4], [17] and [10].

Definition 1.3.3 A map f : A !! B has the left-lifting property (LLP)
with respect to another map g : C !! D if for any commutative square:

B D
k

!!

A

B

f
%%

A Ch !! C

D

g
%%

there exists a diagonal filler l : B !! C such that l ◦ f = h and g ◦ l = k. In
this situation we also say that g has the right-lifting property (RLP) with
respect to f and write f ⊥ g.

Similarly, given two collections of maps G and H of C we say that G has
the LLP with respect to H and H has the RLP with respect to G if and only
if, for any g in G and h in H, g ⊥ h. In this case we write G ⊥ H.
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Given any collection G of maps in C we write ⊥G for the collection of
maps which have the LLP with respect to G and G⊥ for the collection of
maps with the RLP with respect to G.

In terms of Definition 1.3.3 axiom (Q3) states that the following hold:

(C ∩ W) ⊥ F, and

C ⊥ (F ∩ W).

The following lemma strengthens these relations by showing that the fibra-
tions are exactly those maps with the RLP with respect to acyclic cofibra-
tions and the cofibrations are exactly those maps with the LLP with respect
to acyclic fibrations.

Lemma 1.3.4 (The Retracts Argument) If C is a category with a Quillen
homotopy structure, then:

F = (C ∩ W)⊥, (1.5)

C = ⊥(F ∩ W), (1.6)

C⊥ = F ∩ W, and (1.7)
⊥F = C ∩ W. (1.8)

Proof All four arguments are essentially the same. As such, we prove only
(1.5). Suppose f : A !!B has the RLP with respect to acyclic cofibrations.
By (Q4) we may factor f as p ◦ i where i : A !!C is an acyclic cofibration
and p : C !!B is a fibration. As such there exists a diagonal filler h : C !!A
as indicated in the following diagram:

C B.p
!!

A

C

i
%%

A A
1A !! A

B.

f

%%
C

A

h

**

But then the following is a retract diagram:

B B
1B

!!

A

B

f

%%

A Ci !! C

B

p

%%
B B,

1B

!!

C

B
%%

C Ah !! A

B,

f

%%

so f is a fibration by (Q2). !
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Lemma 1.3.5 If C is a category with Quillen homotopy structure, then both
F and F∩W are stable under base change (pullback). Similarly, both C and
C ∩ W are stable under cobase change (pushout).

Proof By Lemma 1.3.4. !

Definition 1.3.6 Given an object A of a model category C a cylinder object
for A is an object Cyl(A) together with a factorization of the codiagonal:

A + A

A
∇ ##!

!
!

!
!

!
!

A + A Cyl(A)ε !! Cyl(A)

A
f$$""

""
""

"

such that f is a weak equivalence. Cyl(A) is a good cylinder object for A if
ε is a cofibration and it is a very good cylinder object for A if it is good and
f is a fibration.

Dually, a path object for A is an object Path(A) together with a factor-
ization of the diagonal:

A

A × A
∆ ##!

!!
!!

!!
!A Path(A)r !! Path(A)

A × A

ι$$""
""

""
"

such that r is a weak equivalence. Path(A) is good if ι is a fibration and
very good if it is good and r is a cofibration.

Axiom (Q4) implies that every object has a very good cylinder object and
a very good path object.

Definition 1.3.7 An object A of a model category C is fibrant if the canon-
ical map A !! 1 is a fibration. A is cofibrant if the canonical map 0 !! A
is a cofibration.

1.4 The interpretation

Assuming that the ambient category C is a model category we may interpret
dependent type theory now by using just the fibrations over an object A,
instead of arbitrary objects in C/A, to interpret the dependent types over
A.

Specifically, a judgement · | A : type in the empty context indicates
that A is a fibrant object of C. A judgement of the form x : A|fB : type

9



then indicates that f : B !! A is a fibration. In particular, a context
(x0 : A0, . . . , xn : An) is well-formed if and only if dom(fm−1) = cod(m) for
each 1 ≤ m ≤ n and each map fi is a fibration:

An
fn !! An − 1

fn−1!! · · ·
f1 !! A0.

Note that fibrations in C/A are those maps which are already fibrations in
C since the model category structure is preserved by slicing.

Choose for each object A of C and each f of C/A very good path objects
and denote them by IdA and Idf , respectively. As the notation indicates
these objects, together with the associated maps r and ι, will serve to inter-
pret the identity types.

Proposition 1.4.1 (Warren) Let C be a model category equipped with a
choice of very good path object for each object A of C and object f of C/A.
Then the rules Id-Form, Id-Intro, Id-Elim and Id-Conv are all valid in C.

Proof The formation rule and introduction rules are valid by definition of
the interpretation of IdA as a very good path object for A. I.e., the formation
rule is valid because ι is a fibration and the introduction rule is valid since
ι ◦ r is the diagonal. To see that the elimination and conversion rules hold
it suffices to work in the empty context since homotopy structure is stable
under slicing. Assume that the following judgements are derivable:

x : A, y : A, z : IdA(x, y) |g B : type and x : A | b : B(x, x, r(x)).

We then require J : IdA
!! B such that g ◦ J = 1IdA

.
By definition of the interpretation, g : B !! IdA is a fibration and there

exists a map b : A !! B with g ◦ b = r. Putting this together we have that
the following square commutes:

IdA IdA.
1IdA

!!

A

IdA

r

%%

A Bb !! B

IdA.

g

%%

But g is a fibration and r is, by definition, an acyclic cofibration. Therefore
there exists a diagonal filler J : IdA

!! B:

IdA IdA.
1IdA

!!

A

IdA

r

%%

A Bb !! B

IdA.

g

%%
IdA

B

J

**

10



Commutativity of the bottom triangle is precisely the conclusion of the
elimination rule:

Γ, x : A, y : A, z : IdA(x, y) | JA,B(b, x, y, z) : B[x, y, z],

and commutativity of the top triangle is the conversion rule:

Γ | JA,B(b, a, a, rA(a)) = b(a) : B(a, a, rA(a)). !

11



Chapter 2

Cocategory Objects

In this chapter we consider cartesian closed categories with a “interval ob-
ject” and how this might be used to prove that various categories possess
homotopy structure (and thus model ITT). Although this way of approach-
ing the model structure of categories is yet incomplete the axioms which we
introduce do provide a fair amount of homotopy structure. In particular,
Proposition 2.4.2 should be mentioned as it provides an interesting char-
acterization of the circumstances under which the “identity type” (induced
by the unit interval) will actually be a type (i.e., a fibration). We end by
showing that the category Gpds of small groupoids satisfies these axioms
and that the resulting homotopy structure agrees with the usual one for this
category.

2.1 Cocategory objects

The notion of cocategory object or internal cocategory is dual to that of a
category object or internal category (cf. [13], [8] or [3]). Rather than rehearse
the latter we state the definition of cocategory object directly.

Definition 2.1.1 A cocategory object C in a category C with pushouts con-
sists of the following data.

Objects: C0 (object of coobjects), C1 (object of coarrows) and C2 (object of
cocomposable coarrows).

Arrows: ⊥,) : C0
!!
!! C1 (bottom and top), i : C1

!! C0 (coidentities),
↓, ↑: C1

!!
!! C2 (initial segment and final segment), and ∗ : C1

!! C2

(cocomposition).

Satisfying the following list of requirements.

12



1. The following square is a pushout:

C1 C2.
↓

!!

C0

C1

&

%%

C0 C1
⊥ !! C1

C2.

↑

%%
(2.1)

2. The following diagram commutes:

C0 C1
⊥ !!C0

C0.
&&

&&
&&

&&

&&
&&

&&
&&

C1

C0.

i
%%

C1 C0
++ &C1

C0.
%%

C0

C0.
##

##
##

##

##
##

##
##

(2.2)

3. The following diagrams commute:

C1 C2,
↓

!!

C0

C1

⊥

%%

C0 C1
⊥ !! C1

C2,

∗

%%
C1 C2.

↑
!!

C0

C1

&

%%

C0 C1
& !! C1

C2.

∗

%%
and (2.3)

4. Notice that since (2.1) is a pushout there exist, by (2.2), canonical
maps i0, i1 : C2

!!
!! C1 such that:

i0◦ ↓ = ⊥ ◦ i,

i0◦ ↑ = 1C1
,

i1◦ ↑ = ) ◦ i, and

i1◦ ↓ = 1C1
.

We stipulate, moreover, that the following counit diagram commutes:

C1 C2
++

i0
C2 C1.i1

!!

C1

C1

##
##

##
##

##
##

##
##

C1

C2

∗

%%

C1

C1.

&&
&&

&&
&&

&&
&&

&&
&&

(2.4)
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5. Finally, let the object C3 (the object of cocomposable triples) be defined
as the following pushout:

C2 C3,q0

!!

C1

C2

↓

%%

C1 C2
↑ !! C2

C3,

q1

%%

and observe that (by the dual of the “two-pullbacks” lemma) C3 may
be alternatively described as the following pushout:

C1 C3,r0

!!

C0

C1

&

%%

C0 C2
↓◦⊥ !! C2

C3,

q0

%%

where r0 := q1◦ ↓ or as the pushout of ↑ ◦) along ⊥:

C1 C3,r1

!!

C0

C1

⊥

%%

C0 C2
↑◦& !! C2

C3,

q1

%%

where r1 := q0◦ ↑.

There exist then canonical maps t0, t1 : C2
!!
!! C3 such that:

t0◦ ↓ = r0,

t0◦ ↑ = q0 ◦ ∗,

t1◦ ↓ = q1 ◦ ∗, and

t1◦ ↑ = r1.

The coassociative law then states that the following diagram com-
mutes:

C2 C3.t1
!!

C1

C2

∗

%%

C1 C2
∗ !! C2

C3.

t0

%%
(2.5)
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Several comments about this definition are in order. Although some of
the nomenclature employed is at this point unfamiliar it is justified below
when we explain our intended interpretation (also, it allows us to avoid such
repugnant locutions as “cocodomain”). In particular, ⊥ is the dual of a
domain map, ) is the dual of a codomain map, and ↓ and ↑ are dual to the
first and second projections, respectively.

Example 2.1.2 The following are examples of cocategory objects.

1. Given an object A of a category C one always has the “trivial cocate-
gory” on A given by setting Ci := A for i = 0, 1, 2 and ⊥ = ) =↓=↑=
∗ = 1A.

2. If D is a cocategory in a category C with products which preserve
pushouts, then A × D is also a cocategory for any object A of C.

3. In Sets the two element set 2 is a cocategory (where C0 := 1, C1 := 2
and C3 := 3 with ⊥,), ↓, ↑ and ∗ defined as one would expect).

4. In Section 2.2 below we introduce a cocategory object in the category
Gpds of small groupoids.

Proposition 2.1.3 If C is a cocartesian ccc with a cocategory object C,
then, for any object D of C, the slice category C/D also possesses a cocategory
object CD. Moreover, if f : B !!D is an arrow in C, then ∆f : C/D !!C/B
preserves the cocategory structure.

Proof The cocategory object CD is given by forming the product with
D. I.e., the object of coobjects is simply the projection ∆D(C0) given by
D × C0

!! D. Since C is a ccc all of the relevant pushout diagrams are
preserved. Since all of the other data is equational it is clear that this is a
cocategory object in C/D. It is also clear that this structure is preserved by
pullback. !

2.2 Homotopy in a CCC with interval object

We will be concerned with cocategory objects with certain additional prop-
erties.

Definition 2.2.1 A cocategory object C in a category C is pointed if the
object C0 of coobjects is the terminal object of C. C is reversible if there
exists a map ρ : C1

!! C1 (the reversal map) such that ρ(⊥) = ) and
ρ()) = ⊥. Finally, C is a strict interval object if it is both pointed and
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reversible. When C is a strict interval object we will write I instead of C1

and I2 instead of C2. We will also omit the word “strict” when referring to
interval objects.

The reader should see Appendix A.1 for a geometric illustration of the def-
inition of interval object.

Example 2.2.2 In the category Gpds of small groupoids the connected
two element groupoid I is an interval object:

⊥,

)

u

,,

⊥,

)

--

d

with ⊥,) : 1 !!
!! I the obvious functors. I2 is then the result of gluing I to

itself along the top and bottom:

⊥.

µ

u↓

..

⊥.

µ

--

d↓

µ

)

u↑

,,

µ

)

//

d↑

Cocomposition ∗ : I !! I2 is the unique functor given by ∗(⊥) := ⊥ and
∗()) := ), and the initial and final segment functors are defined in the
evident way. Finally, ρ : I !! I is defined by ρ(⊥) := ) and ρ()) := ⊥.

Interval objects of this kind are useful in so far as they provide us with a
way of defining (abstractly) such notions as homotopy, fibration and weak
equivalence.

Definition 2.2.3 Let C be a cartesian closed category which is also cocarte-
sian an possesses an interval object I. A homotopy η : f "" g between two
maps f, g : A !!

!! B in C is a map η : A × I !! B such that the following
triangles commute:

A A × I
A0 !!A

B

f
00'

''
''

''
''

''
A × I A++ A1A × I

B

η

%%

A

B

g
11((

((
((

((
((

(
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where A0 := 〈1A,⊥◦!A〉 and A1 := 〈1A,)◦!A〉. One can think of A × I as
an abstract “cylinder” with A0 and A1 as the inclusions at the two ends.

A map p : E !!B in C is a (Hurewicz) fibration if for any object A, and
maps f : A !! E and h : A × I !! B there exists a diagonal filler:

A × I B.
h

!!

A

A × I

A0

%%

A E
f !! E

B.

p

%%
A × I

E&&

I.e., I ⊥ p where I is the collection of all maps of the form A0 for A an
object of C.

A map f : A !!B is a weak equivalence if and only if there exists a map
f ′ : B !! A and homotopies f ◦ f ′ "" 1B and f ′ ◦ f "" 1A.

Remark 2.2.4 Notice that given a homotopy η : f "" g between maps
f, g : A !!

!! B we obtain a homotopy η̄ : g "" f by composing with the
reverse map:

η̄ := η ◦ (1A × ρ).

For the remainder of this section we assume that C is a category satisfying
the assumptions of Definition 2.2.3.

Lemma 2.2.5 The collection F of fibrations in C has the following proper-
ties:

1. F is stable under composition. I.e., if f : A !! B and g : B !! C are
in F, then so is the composite g ◦ f . Moreover, all isomorphisms are
contained in F.

2. (Base change) F is stable under pullback along arbitrary maps. I.e.,
in any pullback square:

B′ B!!

A′

B′

f ′

%%

A′ A!! A

B

f

%%

if f is in F, then so is f ′.

3. Every object of C is fibrant.

17



4. Product projections are fibrations.

Proof Stability under composition and base change are straightforward.
It is trivial to see that every object is fibrant. Finally, (4) is by (2) and
(3). !

As Lemma 2.2.5 suggests the fibrations in this abstract setting already have
useful properties. However, before developing them further it will be in-
structive to first investigate (some of) the higher dimensional structure on
C induced by the interval object I.

2.3 2-categorical structure induced by I

Let C be a cocartesian ccc with interval I. Because I is, by definition, a
cocategory it follows that for any objects A and B of C:

Hom(A × I,B) ∼= Hom(A,BI),

is a category. This therefore trivially induces a 2-categorical structure on C.
In this section we will elaborate on this point by providing a detailed veri-
fication of the 2-categorical structure. This process should help familiarize
the reader with interval objects and the induced 2-categorical structure.

Lemma 2.3.1 (Homotopies compose) Given maps f, g and h with do-
main A and codomain B, if η : f "" g and γ : g "" h, then there exists a
homotopy δ : f "" h.

Proof First observe that since C is cartesian closed the following square is
a pushout:

A × I A × I2.1A×↑
!!

A × 1

A × I

1A×⊥

%%

A × 1 A × I
1A×& !! A × I

A × I2.

1A×↓

%%

Then, since η ◦ A1 = γ ◦ A0, there exists a canonical map δ : A × I2
!! B

such that:

δ ◦ (1A× ↑) = γ, and

δ ◦ (1A× ↓) = η.

Recalling the third clause from the definition of cocategory object, it is easily
verified that δ ◦ (1A × ∗) is the required homotopy. !

18



Henceforth, given homotopies η and γ as in the statement of Lemma 2.3.1,
we write (γ · η) : f "" h for the homotopy δ ◦ (1A × ∗) constructed in the
proof and refer to this as the vertical composition of η and γ. It is also
convenient to introduce notation for the “mediating map” δ. As such, we
write c[γ, η] instead of δ and observe that (γ · η) = c[γ, η] ◦ (1A × ∗). I.e.,
c[γ, η] is “data” for the composition (γ ·η) prior to being “fused” or “merged”
by precomposition with (1A × ∗).

Remark 2.3.2 Given homotopies α,β : A × I !! B for which the vertical
composite (β · α) exists and any map g : D !! A:

c[β,α] ◦ (g × 1I2) = c[β ◦ (g × 1I),α ◦ (g × 1I)].

Assume given a “2-dimensional” diagram involving objects, arrows and ho-
motopies in C:

C D

f

22
C D

g

33η
44

D E.

h

22
D E.

k

33γ
44

Then we define the horizontal composition γ + η to be the homotopy C ×
I !! E given by the composite:

C × I
1C×∆ !! C × I × I

η×1I !! D × I
γ !! E,

where ∆ : I !! !!I×I is the diagonal. This is clearly a homotopy h◦f ""k◦g.

Lemma 2.3.3 (Interchange) Let the following diagram be given:

C D

f

55
C D

h

**C Dg !!
α 44

β 44

D E,

k

55
D E,

m

33
D E,l !!

γ 44

δ 44

Then the Interchange Law holds:

(δ + β) · (γ + α) = (δ · γ) + (β · α).

Proof Observe that:

(δ · γ) + (β · α) = c[γ, δ] ◦
(
c[β,α] × 1I

)
◦ (1C × ∆) ◦ (1C × ∗).
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Therefore it suffices to show that:

c[γ, δ] ◦
(
c[β,α] × 1I

)
◦ (1C × ∆) = c[δ + β, γ + α],

which is a straightforward application of the definitions. !

Proposition 2.3.4 Let C be a cartesian closed category which is cocartesian
and possesses an interval object I. Then C is a 2-category (cf. Appendix A.3)
with the same objects and arrows, and with 2-cells given by homotopies.

Proof We have already defined vertical and horizontal composition of 2-
cells. By Lemma 2.3.3 the interchange law holds. All that remains is to
verify that the compositions are associative and that identities exist.

Given an arrow f : A !!B the identity homotopy 1f : f "" f is defined
to be f ◦ πA : A× I !!B. Assume given a homotopy γ : f "" g in order to
show that (γ · 1f ) = γ. Observe that:

γ = γ ◦ (1A × i0) ◦ (1A × ∗),

by (2.4) from Definition 2.1.1. Therefore it suffices to prove that:

γ ◦ (1A × i0) = c[γ, 1f ],

which is straightforward. The other half of the unit law follows similarly.
Associativity of vertical composition is by a similar argument using (2.5).
Associativity of horizontal composition is clear from the definition of +, as
is 1f + 1g = 1f◦g. !

Remark 2.3.5 The situation of Proposition 2.3.4 is to be contrasted with
that of topological spaces and homotopies of continuous maps where it is
necessary first to quotient by the existence of appropriate 3-cells (homotopies
of homotopies). This points the way for further work on the notion of a weak
interval.

When C is a cocartesian ccc with an interval object I we write (C, I) for the
2-category described in Proposition 2.3.4.

Using the 2-categorical structure of (C, I) we may now easily verify the
“three-for-two” axiom.

Corollary 2.3.6 If C is a cocartesian ccc with an interval object I, then the
weak equivalences as defined above satisfy the “three-for-two” axiom.
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Proof Let maps f : A !! B and g : B !! C be given. First, assume g ◦ f
and g are weak equivalences. As such, there exist maps g′ : B !! C and
h : C !! A together with homotopies γ0 : g′ ◦ g "" 1B , γ1 : g ◦ g′ "" 1C ,
η0 : h◦(g ◦f) ""1A and η1 : (g ◦f)◦h ""1C . Define f ′ := h◦g and observe
that η0 : f ′◦f ""1A. To construct the other required 2-cell f ◦f ′ ""1B note
that, since (C, I) is a 2-category, we need only provide a “pasting-diagram”
(cf. [11]):

B B

1B

66B

Cg
77 C

Ah 88 A

B

f

''
B

B

1B

##

C

C
1C 99

B

C
g::C

B
g′

;"

η1
44

γ0
44

γ̄044

where γ̄0 : 1B
"" g′ ◦ g is the “reverse homotopy” as discussed in Remark

2.2.4. The other two cases are similarly verified. !

2.4 Path objects

In order to use intervals to construct a path object as the interpretation of
the identity type, we need to know that AI !! A × A is a fibration.

Definition 2.4.1 An object A of C is contractible if and only if the canonical
map !A : A !! 1 is a weak equivalence. A subobject m : S !! !! A is a strong
deformation retract of A if there exists a retraction r : A !! S and a
homotopy η : m ◦ r "" 1A such that the following diagram commutes:

S A.m
!!

S × I

S

πS

%%

S × I A × I
m×1I !! A × I

A.

η
%%

Proposition 2.4.2 (Warren) The following are equivalent:

1. For any object A of C, the map ι : AI !!A×A defined by ι := 〈A⊥, A&〉
is a fibration.

2. The interval I is contractible in the strong sense that the map ⊥ : 1 !!I
is a strong deformation retract of I.
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3. There exists a binary operation ! : I × I !! I such that the following
diagrams commute:

I × I I,
!

!!

I

I × I

I0

%%

I I × I
I0 !! I × I

I,

!

%%

I

I,

⊥◦!

!!
!!

##!
!!

!

and:

I

I,
1I ##!

!!
!!

!I I × I
I1 !! I × I

I,
!$$""

""
""

where I0 := 〈⊥◦!, 1I 〉. I.e., internally:

x ! ⊥ = ⊥

= ⊥ ! x,

and:

x ! ) = x,

for x : I.

Proof (2) and (3) are clearly equivalent. To see that (1) implies (3) notice
that since ι : II !! I × I is a fibration there exists a lift λ : I !! II as
indicated in the following diagram:

I I × I.
I0

!!

1

I

⊥

%%

1 IIk⊥ !! II

I × I.

ι

%%
I

II

λ

**

The desired map ! is then defined to be the exponential transpose of λ.
Now to see that (3) implies (1), assume that the following diagram com-

mutes:

Y × I A × A
h
!!

Y

Y × I

Y0

%%

Y AIg !! AI

A × A

ι

%%
(2.6)
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and let λ : I !! II be the transpose of !.
Write α : Y ×I !!A for π1◦h, β : Y ×I !!A for π2◦h and γ : Y ×I !!A

for the transpose of g : Y !!AI . Finally, define maps α̂, γ̂ : Y × I × I !!
!!A

as follows:

α̂ := α ◦ (1Y × !) ◦ (1Y × 1I × ρ), and

γ̂ := γ ◦ (π1 × π3).

Then we may form the vertical composition (γ̂ · α̂) as indicated in the fol-
lowing diagram:

Y × I × I Y × I × I21Y ×1I×↓
!!

Y × I × 1

Y × I × I

1Y ×1I×&

%%

Y × I × 1 Y × I × I!! Y × I × I

Y × I × I2

1Y ×1I×↑

%%
Y × I × I

A
α̂

<;

Y × I × I

A

γ̂

=<

Y × I × I2

A

c[γ̂,α̂]

>=

where the canonical map c[γ̂, α̂] exists since the square is a pushout and:

γ̂ ◦ (1Y × 1I ×⊥) = γ ◦ Y0

= α ◦ Y0

= α ◦ (1Y × !) ◦ (1Y × 1I ×⊥)

= α ◦ (1Y × !) ◦ (1Y × 1I × ρ) ◦ (1Y × 1I ×))

= α̂ ◦ (1Y × 1I ×)).

Here the second identity is by (2.6).
Now, where β̂ : Y × I × I !! A is defined as β̂ := β ◦ (1Y × !) we may

again form the vertical composite (β̂ · (γ̂ · α̂)) since:

β̂(1Y × 1I ×⊥) = β ◦ Y0

= γ ◦ Y1

= γ̂ ◦ (1Y × 1I ×))

= c[γ̂, α̂] ◦ (1Y × 1I × (↑ ◦)))

= (γ̂ · α̂) ◦ (1Y × 1I ×)),

where the second identity is again by (2.6) and the final identity is by (2.3).
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Write δ : Y × I !!AI for the transpose of (β̂ · (γ̂ · α̂)). We claim that δ is
the required lift. First, that ι ◦ δ = h is straightforward using the definition
of δ. Secondly, to see that δ ◦ Y0 = g notice that:

(β̂ · (γ̂ · α̂)) ◦ (Y0 × 1I) = c[β̂ ◦ (Y0 × 1I), (γ̂ · α̂) ◦ (Y0 × 1I)] ◦ (1Y × ∗).

Also notice that:

β̂ ◦ (Y0 × 1I) = β ◦ (1Y × !) ◦ (1Y × I0)

= β ◦ (1Y ×⊥◦!I).

But β ◦ (1Y × ⊥◦!I) is an identity 2-cell 1β◦Y0
: β ◦ Y0

"" β ◦ Y0. A similar
calculation shows that α̂ ◦ (Y0 × 1I) is the identity 2-cell 1α◦Y0

. Combining
this with the foregoing we obtain:

(β̂ · (γ̂ · α̂)) ◦ (Y0 × 1I) = (γ̂ · α̂) ◦ (Y0 × 1I)

= c[γ̂ ◦ (Y0 × 1I), α̂ ◦ (Y0 × 1I)]

= γ̂ ◦ (Y0 × 1I)

= γ.

Therefore g = δ ◦ Y0, as required. !

Observe that the proof of Proposition 2.4.2 uses the fact that the interval
is strict in the sense that all of the cocategory equations commute “on the
nose” and not up to the existence of higher dimensional isomorphisms. The
intuition behind this proof is that ! : I × I !! I is just rescaling. I.e., we
think of the action of ! as multiplication:

x ! y := (xy),

for x, y real numbers in the closed unit interval. Of course, this intuition
should not be taken too seriously since ! need not even be commutative.

Corollary 2.4.3 If C satisfies the equivalent conditions from Proposition
2.4.2, then, for any object A, the “constant loop” (or “diagonal” or “reflex-
ivity”) map r : A !! AI is a strong deformation retract of AI .

Proof Clearly r is a section of A⊥ : AI !! A. The required homotopy
η : r ◦ A⊥ "" 1AI is constructed as the transpose of the composite:

AI × I × I
1

AI×!
!! AI × I ev !! A.

Then η is a homotopy r ◦A⊥ ""1AI by definition of !. Finally, η is a strong
deformation retract since ev ◦ (r × 1I) = πA. !
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Definition 2.4.4 A cocartesian ccc C with an interval object I has (inter-
val) identity types induced by I if it satisfies the following conditions:

(I0) I satisfies any of the equivalent conditions from Proposition 2.4.2. I.e.,
⊥ : 1 !! I is a strong deformation retract of I.

(I1) For every object A, the constant loop map r : A !!AI , which arises as
the transpose of the projection A×I !!A, has the left lifting property
with respect to all fibrations:

r ⊥ F.

Example 2.4.5 The category Gpds of small groupoids clearly satisfies
(I1) since it possesses a model structure for which the map r : G !! GI is
an acyclic cofibration (i.e., a categorical equivalence which is injective on ob-
jects). Moreover, ! : I× I !! I may be defined by setting ⊥!x = x!⊥ = ⊥
for any object x of I and )!x = x!) = x for any object x of I. Therefore,
Gpds possesses identity types induced by I.

It should be clear from the proof of Proposition 1.4.1 that if C has interval
identity types induced by I, then it also satisfies all of the type theoretic rules
governing propositional identity types. This is convenient since it should be
easier to prove that a category has interval identity types than that it is a
model category. Of course, this axiomatization is not entirely satisfactory
as it stands, since condition (I1) still needs to be analyzed further, and
one feels that its connection with model categories should be made clearer.
While we have not yet found a satisfactory (i.e., sufficiently non-trivial)
answer to this question we nonetheless consider in Appendix A.2 below one
notion of cofibration in a category satisfying the conditions of Definition
2.4.4.

2.5 Groupoids

One of the principal examples of a category which has identity types in-
duced by an interval is the category Gpds of small groupoids and functors
between them. The interval is, as mentioned above, the connected two ele-
ment groupoid I. One particularly nice feature of Gpds is that the model
category structure coincides with that induced by I. It is to proving this
which we now turn. First, recall that in the Quillen homotopy structure for
Groupoids the weak equivalences are just ordinary categorical equivalences
(cf. [10]). I.e., those maps for which there exists a pseudo-inverse.
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Lemma 2.5.1 Given functors f, g : G !!
!!H in Gpds, there is an isomor-

phism:

Homotopies(f, g) ∼= Nat(f, g),

between the collection of homotopies from f to g and the collection of natural
transformations from f to g.

Proof First, given a homotopy η : f "" g and an object a of G, define
η̂a : f(a) !! g(a) to be the map:

η(a,⊥)
η(a,u)

!! η(a,))

! !

f(a) g(a),

where u is the map ⊥ !! ) as defined in Example 2.2.2. This assignment
determines a natural transformation η̂ from f to g.

Alternatively, given a natural transformation γ from f to g define a
homotopy γ̌ : G × I !! H by the following assignments:

γ̌(a,⊥) := f(a),

γ̌(a,)) := g(a),

γ̌(a, u) := γa, and

γ̌(a, d) := γ−1
a ,

where a is an object of G and where the definition extended to maps in G
in the obvious way.

Finally, ·̂ and ·̌ are clearly inverse to one another by definition. !

In order to make the connection between these two structures on the cat-
egory of groupoids explicit it is natural to compare the corresponding 2-
categories (Gpds, I) and Gpds, where the 2-cells of the latter are natural
transformations.

Remark 2.5.2 It is useful to note that in Gpds if we are given two com-
posable homotopies:

G H

f

55
G H

h

**G Hg !!
α 44

β 44

(2.7)
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and an object a of G, then:

(β · α)(a, u) = β(a, u) ◦ α(a, u), (2.8)

since:

c[β,α] ◦ (1G × ∗)(a, u) = c[β,α](a, u↑ ◦ u↓)

= c[β,α](a, u↑) ◦ c[β,α](a, u↓).

The corresponding remark also applies to (β · α)(a, d).

Proposition 2.5.3 There exists an isomorphism of 2-categories:

(Gpds, I) ∼= Gpds.

Proof First, we define 2-functors (cf. Definition A.3.2):

(Gpds, I) F !! Gpds, and

Gpds G !! (Gpds, I)

as follows. Both F and G are defined to be the identity on objects and
arrows. On 2-cells:

F (η) := η̂, and

G(γ) := γ̌,

where ·̂ and ·̌ are as defined in Lemma 2.5.1. Now we must show that F
and G preserve vertical and horizontal composition of 2-cells. Let the data
of Diagram (2.7) from Remark 2.5.2 above be given where the 2-cells are in
(Gpds, I) and let an object a of G be given. We must show that:

(β̂ · α)a = (β̂)a ◦ (α̂)a.

To this end observe that:

(β̂ · α)a = β · α(a, u)

= β(a, u) ◦ α(a, u)

= (β̂)a ◦ (α̂)a,

as required. Next we require that if the 2-cells of Diagram (2.7) are 2-cells
of Gpds, then:

G(β · α) = β̌ · α̌. (2.9)
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A similar calculation to that just given, now using the fact that the right-
hand side of (2.9) is equal to c[β̌, α̌]◦ (1G ×∗), shows that this equation also
holds.

For horizontal composition, assume given the following data:

G H

f

22
G H

g

33α
44

H K,

h

22
H K,

k

&&
β

44
(2.10)

with the 2-cells from (Gpds, I). To show that F (β + α) = F (β) + F (α),
assume given an object a of G and note that:

(β̂ + α̂)a = β̂g(a) ◦ h(α̂a)

= β(g(a), u) ◦ h(α(a, u))

= β(α(a,)), u) ◦ β(α(a, u),⊥)

= β(α(a, u), u)

= (β̂ + α)a,

as required.
Now suppose the data of (2.10) is taken in Gpds to show that G(β+α) =

G(β)+G(α). To see that this is the case notice that if we are given an object
a of G, then:

G(β) +G(α)(a, u) = G(β)
(
G(α)(a, u), u

)

= G(β)(αa, u)

= βg(a) ◦ h(αa)

= (β + α)a

= G(β + α)(a, u),

as required. The other case is similar.
Finally, identity maps are preserved by definition and, by Lemma 2.5.1,

F and G are inverses. !

Corollary 2.5.4 A functor f : G !! H is a weak equivalence in the sense
of Definition 2.2.3 if and only if it is a categorical equivalence.

Proof First, assume f is a weak equivalence as defined in Definition 2.2.3.
As such, there exists a map f ′ : H !! G together with homotopies η :
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f ◦ f ′ "" 1H and γ : f ′ ◦ f "" 1G. But then, where F and G are the 2-
functors defined in Proposition 2.5.3, F (η) is a natural transformation from
f ◦ f ′ to 1H and similarly for F (γ). Moreover, both of these are natural
isomorphisms since all maps in Gpds are isomorphisms.

Similarly, given a categorical equivalence f : G !! H together with
its pseudo-inverse f ′ : H !! G and the witnessing natural isomorphisms
φ : f ◦ f ′ ∼= 1H and ψ : f ′ ◦ f ∼= 1G we obtain the required homotopies by
simply applying the 2-functor G. !

Definition 2.5.5 A map p : E !!B of groupoids is a Grothendieck fibration
if for any object e of E and arrow j : b !! p(e) in B, there exists a map
j̃ : b̃ !! e in E such that p(j̃) = j.

Lemma 2.5.6 A map p : E !! B of groupoids is a Grothendieck fibration
if and only if it is a fibration in the sense of Definition 2.2.3.

Proof Let a Grothendieck fibration p : E !!B together with a commuta-
tive diagram:

G× I B
k
!!

G

G× I

G0

%%

G Eh !! E

B

p

%%

be given. Fix an object a of G. Then p(h(a)) = k(a,⊥) and k(a, d) :
k(a,)) !! k(a,⊥). Thus, since p is a Grothendieck fibration, there exists a
lift j : b !! h(a) in E such that p(j) = k(a, d). As such, we define a functor
g : G × I !! E by setting g(a,⊥) := h(a), g(a,)) := b, g(a, u) := j−1 and
g(a, d) := j. Therefore, g is the required lift.

Conversely, suppose p is a fibration induced by the interval I and let an
object e of E together with a map j : b !! p(e) in B be given. Then the
following diagram commutes:

I B,
h

!!

1

I

⊥

%%

1 Ee !! E

B,

p

%%

where h : I !!B is defined by setting h(⊥) := p(e), h()) := b, h(d) := j and
h(u) := j−1. Therefore, since p is a fibration there exists a lift g : I !! E.
Therefore, g(d) is the required lift of j : b !! p(e) in E. !
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The following lemma establishes a special property of cofibrations in Gpds.
For the definition of Hurewicz cofibrations and CH the reader should refer
to Definition A.2.1. Recall that cofibrations in Gpds are functors injective
on objects.

Lemma 2.5.7 In Gpds, CH = C. I.e., Hurewicz and ordinary cofibrations
coincide.

Proof By (3) of Lemma A.2.2 we have that C ⊆ CH . Therefore, suppose
a map of groupoids i : G !! H is a Hurewicz cofibration and let objects a
and b of G be given such that i(a) = i(b).

Consider the following diagram:

H Ig
!!

G

H

i
%%

G II
f !! II

I

I⊥

%%
(2.11)

where:

f(x) :=






1& if x = a;

d if x ∼= a but x 0= a; and

1⊥ otherwise;

where x is an object of G. On arrows:

f(α : x !! y) :=






1(1⊥) if x, y # a;

1d if x, y ∼= a and x 0= a 0= y;

1(1&) if x = y = a;

(1&, u) if x ∼= a, x 0= a and y = a; and

(1&, d) if x = a, y ∼= a but y 0= a;

where α : x !! y is an arrow of G. Let Ca be the set of objects of G
isomorphic to a (i.e., the “connected component” of a). Let g be defined by:

g(x) :=

{
) if x ∈ i(Ca);

⊥ otherwise;

for x an object of H and:

g(α : x !! y) :=






1⊥ if neither x nor y is in i(Ca);

u if x /∈ i(Ca), but y ∈ i(Ca);

d if x ∈ i(Ca), but y /∈ i(Ca); and

1& if x, y ∈ i(Ca);
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where α : x !! y is an arrow in H.
Given these definitions f and g are functorial and (2.11) commutes.

Therefore, since i is a Hurewicz cofibration there exists a lift f̂ making the
following diagram commute:

H I.g
!!

G

H

i
%%

G II
f !! II

I.

I⊥

%%
H

II

f̂
**

Thus:

f(a) = f̂ ◦ i(a)

= f̂ ◦ i(b)

= f(b);

but, by definition of f , then a = b. !
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Appendix A

Assorted Additional Material

Below we collect both a schematic picture of the definition of interval object
and, for the convenience of the reader, the definition of 2-category.

A.1 A schematic picture of the definition of a interval object

We will now give a brief presentation of the “intended picture” of cocategory
objects which should help the reader understand the intuition a little better
(this picture is in some sense just a way of illustrating the cocategory object
in Gpds discussed below). To begin with, we will regard C0 as a single
point:

•,

and C1 will be regarded as the “unit interval”:

) )

The maps ⊥ and ) then are simply points of the interval:

•
⊥

?>

•
&

@?) )

where ⊥ is identified with the “bottom” end of the interval and ) is identified
with the “top” end.

C2 is then, by definition, the result of gluing the interval to itself by
identifying the top and bottom:

) ) ) )
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and the maps ↓, ↑: C1
!!
!! C2 have the actions illustrated as follows:

) )) )

) )

(( ((

C1

C2

%%

↓

and:

) )) )

) )

'' ''

C1

C2

%%

↑

The point ↓ ◦) =↑ ◦⊥ may (in some sense) be identified with the midpoint
of C2.

The cocomposition ∗ : C1
!! C2 is then the “magnification” operation:

) )) )

) )

(( ''

C1

C2

%%

∗

The maps i0, i1 : C2
!!
!! C1 mentioned in the fourth axiom for cocategory

objects have the action, in this case, of collapsing the initial segment to ⊥
and collapsing the final segment to ), respectively. This is illustrated as
follows:

) ) ) )

) )A@ BA BA

C2

C1

%%

i0

and

) )) )

) )A@ A@ BA

C2

C1

%%

i1

33



The construction of C3 may be visualized as:
) ) ) ) ) )

) )) )) )@? ?>

or
) )) )

) )) )) )

) )

@? ?>

The maps t0, t1 : C2
!!
!! C3 are then given schematically by:

) )) )

) ) ) )) )CB >=CB

C2

C3

%%

t0

and:

) )) )

) ) ) )) )CB >=>=

C2

C3

%%

t1

A.2 Cofibrations

Throughout this section we assume that C is a cocartesian ccc with inter-
val object I satisfying condition (I0) of Definition 2.4.4 unless otherwise
stated. We have already defined the fibrations F in C to be the Hurewicz
fibrations and the weak equivalences W to be the homotopy equivalences.
In this section we study two kinds of cofibrations in such a category and
present two small results about cofibrations. The proofs of these results are
straightforward and are, in the interest of space, therefore omitted.

The “only” real candidate for the cofibrations is then the collection of
maps ⊥(F ∩ W) which have the left lifting property with respect to acyclic
fibrations. For practical purposes it will be convenient to have a better
description of the cofibrations (as, for instance, one does in the case of
Gpds). For now we call a map a cofibration if and only if it is a member of
this collection:

C := ⊥(F ∩ W).

Definition A.2.1 A map p : E !! B is a trivial fibration if and only if it
has the right lifting property with respect to cofibrations. As such, C⊥ is
the collection of trivial fibrations.
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A map i : A !! X is a Hurewicz cofibration if and only if it has the
homotopy extension property (HEP). I.e., for any commutative diagram:

X B!!

A

X

i

%%

A BI!! BI

B

B⊥

%%

there exists a diagonal filler. We write CH for the collection of Hurewicz
cofibrations.

Lemma A.2.2 Given the foregoing definition of C and CH in C the follow-
ing hold.

1. Both C and CH are stable under composition. Moreover, both collec-
tions contain all isomorphisms.

2. Every canonical map 0 !!A is a Hurewicz cofibration. I.e., all objects
are Hurewicz cofibrant.

3. C ⊆ CH .

4. (Cobase change) Both C and CH are stable under cobase change.

5. All coproduct injections iA : A !! A + B are in CH .

Lemma A.2.3 All four classes of maps F, W, C and CH satisfy the “re-
tracts” axiom.

A.3 2-Categories and their structure

A 2-category C consists of a category together with a notion of ‘transfor-
mation’ between the arrows of the category. As such, C is comprised of
three types of things. First, C comes equipped, as does any category, with
a collection C0 of objects and a collection C1 of arrows. These objects and
arrows are endowed with the usual composition f ◦ g, identities 1C , domain
dom(f) and codomain cod(f) operations satisfying the associative and unit
laws. We write f : A !!B as usual to indicate that f is an arrow such that
dom(f) = A and cod(f) = B. For a little variation we will sometimes call
the objects 0-cells and the arrows 1-cells.

An abstract notion of “natural transformation” or “homotopy” between
arrows in C is given by a third collection C2 of 2-cells: α,β, et cetera.

35



Since 2-cells are to be thought of as natural transformations they also come
equipped with domain and codomain operations:

dom(−), cod(−) : C2
!!
!! C1.

Some authors call these “source” and “target” to distinguish them from the
corresponding operations on 1-cells; however, we trust no confusion should
result from this economy of notation. We write η : f ""g to indicate that η
is a 2-cell with dom(η) = f and cod(η) = g. We will also sometimes indicate
this diagrammatically by:

C D.

f

22
C D.

g

33
η
44

Such diagrams have the advantage of providing information about the do-
main and codomain of f and g as well (in this example both maps have
domain C and codomain D — and there are 2-cells only between 1-cells
with the same domain and codomain.)

We also stipulate that C come equipped with two forms of composition
for 2-cells. These are called vertical and horizontal composition. Given 2-
cells η and γ such that cod(η) = dom(γ) we may form the vertical composite
γ · η. This vertical composite γ · η then has the same domain as η and the
same codomain as γ. For instance, if η : f "" g and γ : g "" h, then
γ · η : f "" h. This is illustrated diagrammatically as follows:

C D

f

55
C D

h

**C Dg !!

η 44

γ 44

) !!!"!"!"!" C D.

f

22
C D.

h

33γ·η

44

Moreover, for any arrow f : C !!D there exists an identity 2-cell 1f : f ""f
which is a unit for vertical composition.

For the second form of composition of 2-cells (horizontal composition),
consider the following situation:

C D

f

22
C D

g

33η
44

D E.

h

22
D E.

k

33γ
44
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The horizontal composite, written γ∗η, is defined to be a 2-cell h◦f ""k◦g.
That is, the horizontal composite γ ∗ η is defined when cod(dom(η)) =
dom(dom(γ)). It is also required by the definition of 2-category that 1g∗1f =
1g◦f where cod(f) = dom(g). Finally, we require that given:

C D

f

55
C D

h

**C Dg !!
α 44

β 44

D E,

k

55
D E,

m

33
D E,l !!

γ 44

δ 44

the following Interchange Law holds:

(δ ∗ β) · (γ ∗ α) = (δ · γ) ∗ (β · α).

Putting the foregoing (informal) sketch together we obtain:

Definition A.3.1 A 2-category C consists of the following data:

Objects: A collection C0 of objects (or 0-cells) A,B et cetera.

Arrows: A collection C1 of arrows (or 1-cells) f, g et cetera.

2-cells: A collection C2 of 2-cells γ, δ, et cetera.

Domain and codomain: Maps domi(−), codi(−) : Ci+1
!!
!!Ci for i = 0, 1

(we will omit these indices when no confusion will result).

Composition: Composition operations (−◦−) on 1-cells, and (− ·−) and
(−∗−) on 2-cells which are defined only when domains and codomains
match in the sense that:

(f ◦ g) is defined iff dom(f) = cod(g),

(γ · η) is defined iff dom(γ) = cod(η), and

(γ ∗ η) is defined iff dom(dom(γ)) = cod(cod(η)).

All three forms of composition are required to be associative.

Identities: Distinguished arrows 1A : A !!A for each object A in C0 and 2-
cells 1f : f ""f for each arrow f in C1. Therefore there are also 2-cells
11A

: 1A
"" 1A for each object A in C0. The arrows 1A are required to

be units for ordinary composition ◦, the 2-cells 1f are required to be
units for vertical composition ·, and the 11B

are required to be units
for horizontal composition ∗. Moreover, we require that:

(1g ∗ 1f ) = 1g◦f .
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Interchange law: Finally, we stipulate that the interchange law holds:

(δ ∗ β) · (γ ∗ α) = (δ · γ) ∗ (β · α),

whenever:

C D

f

55
C D

h

**C Dg !!
α 44

β 44

D E.

k

55
D E.

m

**D E,l !!

γ 44

δ 44

Once one has defined 2-category it is natural to define a notion of 2-functor
thereby permitting us to compare 2-categories.

Definition A.3.2 Given 2-categories C and D a (strict) 2-functor F :
C !! D consists of maps F0 : C0

!! D0, F1 : C1
!! D1 and F2 : C2

!! D2,
which preserve (both forms of) identities and (all three forms of) composi-
tion.
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